2019年度IGRA(QFT)外部精度管理

QFT検査の品質向上に向けた提案

2020年10月31日 結核感染診断研究会(Web)

ファルコバイオシステムズ 総合研究所 山下和也

はじめに

- •結核感染診断研究会は2019年12 月~2020年1月にQFT外部精度管 理調査を実施した
- ・各施設の精度状況を評価し、QFT 検査の精度向上に寄与することを 目的とした

2019年度 IGRA (QFT) 外部精度管理調查

調查項目

試料 レベル1、2 三重測定(IFN-γ濃度)

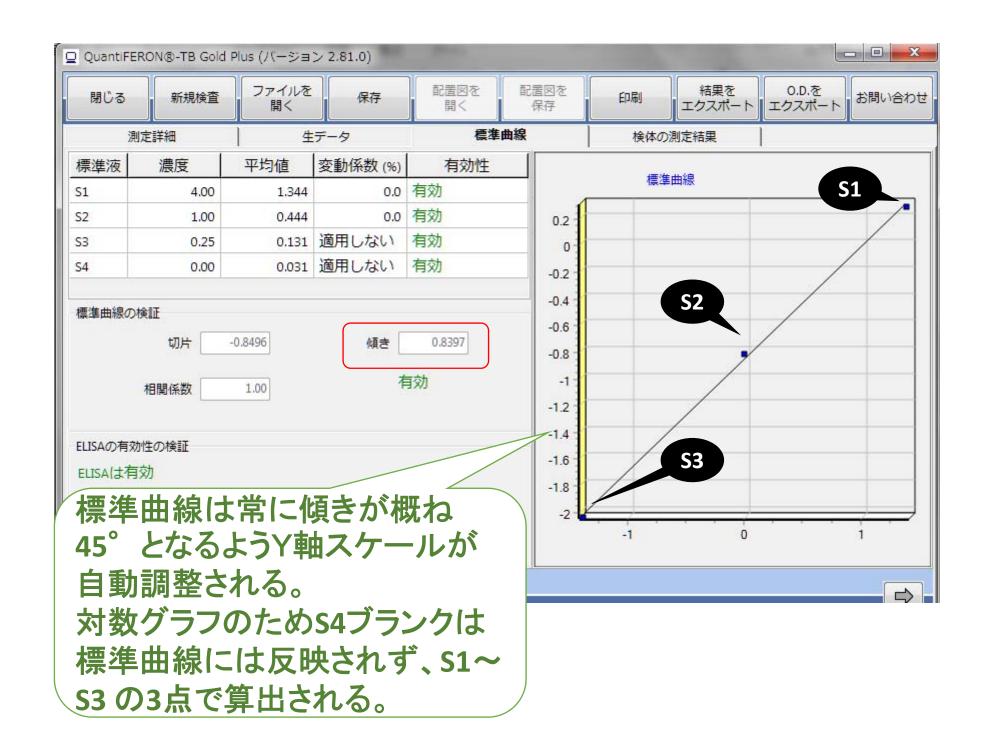
(キアゲン社コントロールパネル)

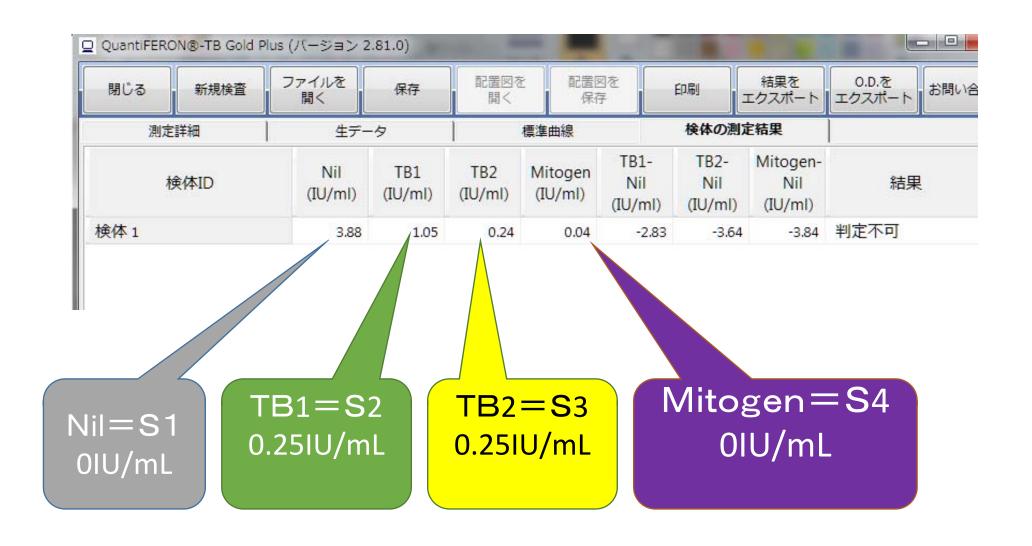
- 計算項目 レベル2ーレベル1(ブランク補正値)
- 採血~検査工程に関するアンケート調査

参考調查項目

•標準液S1~S4吸光度(OD)

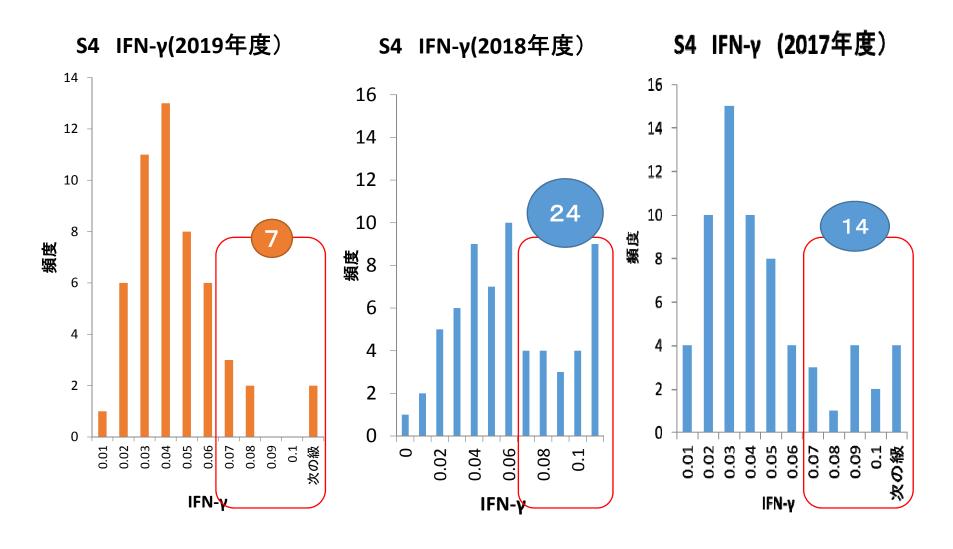
(キアゲン社コントロールパネル)


精度上の問題を明らかにするために

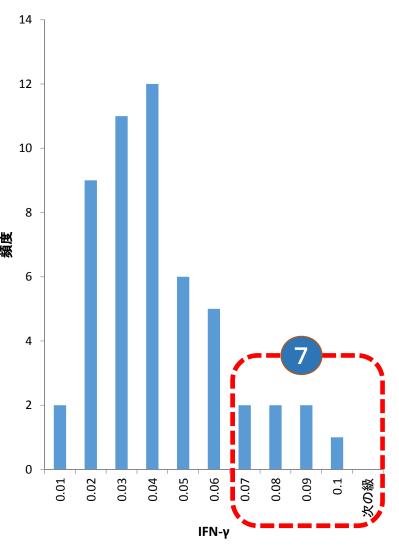

- 参考調査項目を利用した原因の追及
 - ①検量線の確認
 - •••全ての施設が品質管理をパスしていた。
 - ②標準液(S2~S4)のODよりIFN-γ量を算出(戻り値) 求めたIFN-γ量と理論値の比較検討 S4とレベル1のIFN-γ量を比較検討 S2IFN-γ量とレベル2の相関検討

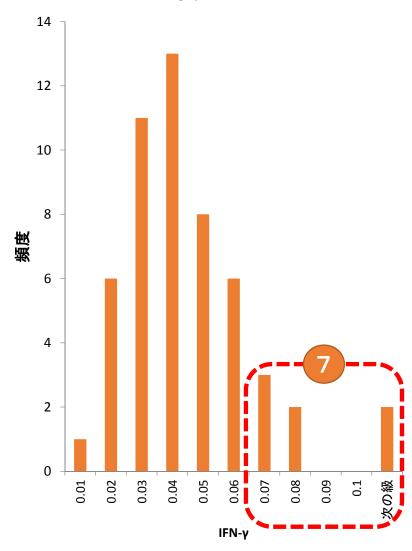
ELISA試験の品質管理

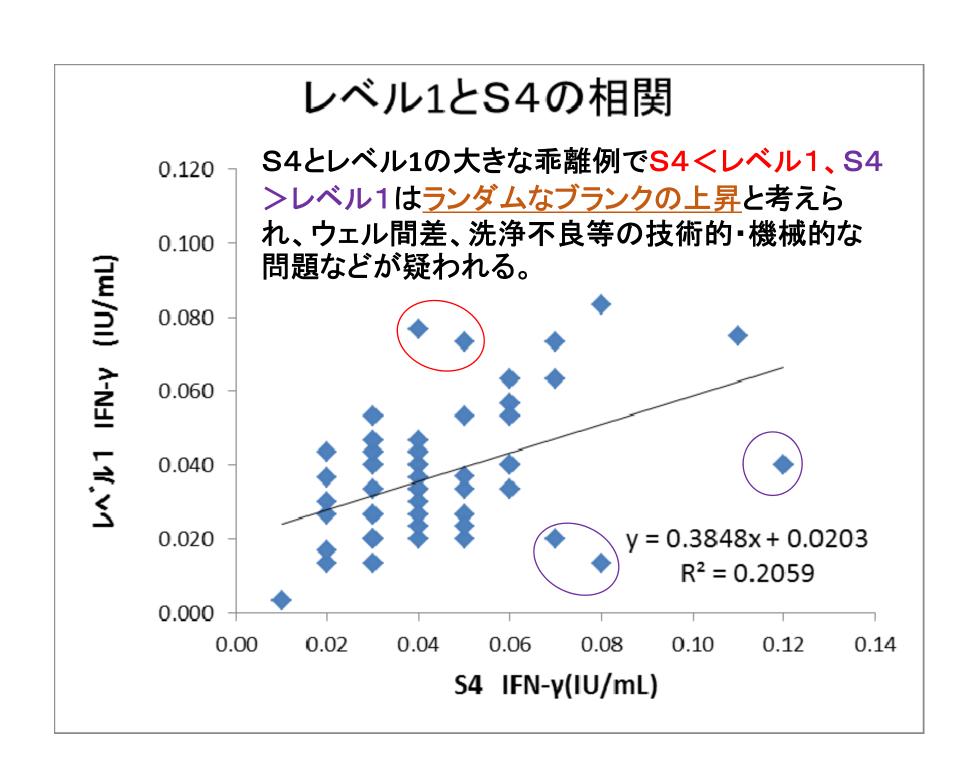
- 標準液(S1)のODは0.600以上
- ●標準液S1、S2のODの変動係数は15%以下
- 標準液S3、S4のODはそれぞれのOD平均±0.040 以内
- IFN-γの標準曲線の相関係数は0.98以上
- 標準液S4の平均ODは0.150以下
- 標準液S1~3の平均ODを用いlog-log標準曲線を 作成する(S4はOIU/mLのため除外)
- 回帰分析により最適な標準曲線を算出する。回帰式はY=aX+bで表す。



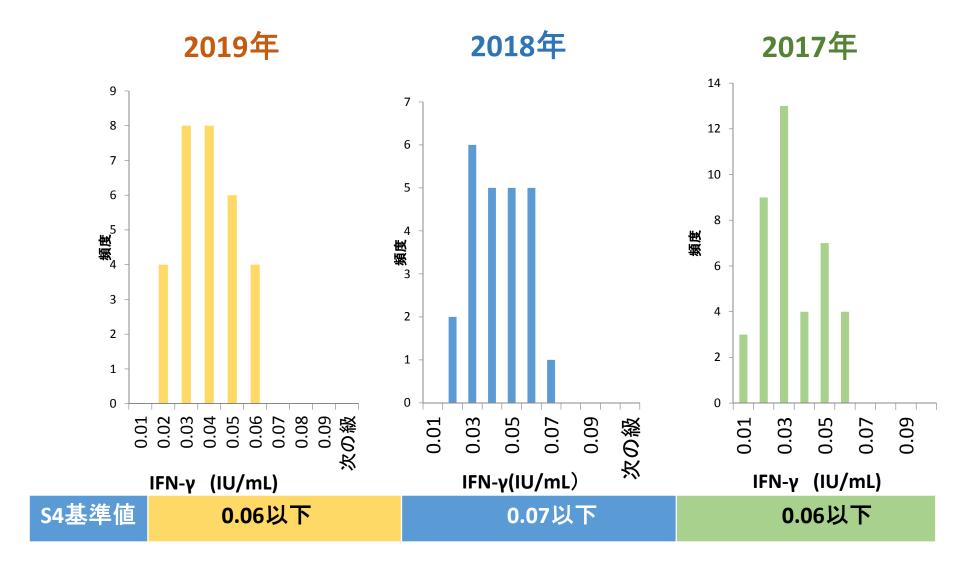
ブランク値の評価


S4,レベル1報告値からの検討


S4(IFN-γ:ブランク値)の年度推移



レベル1(2019年度)


S4 IFN-γ(2019年度)

A評価32施設のS4(IFN-γ)を元に2SD反復切断後(臼井法)のヒストグラムにより基準範囲を設定した。

S4,レベル1に関するまとめ

- S4の評価より、一部でブランク高値が見られるものの前年度に比べ改善が進んだ。
- S4とレベル1との乖離が数施設見られ、ランダムなブランクの上昇と考えられた。
- S4 ODより求めたIFN-γ値は0.06IU/mL以下 が適切と考えられた。

バックグラウンドが高い

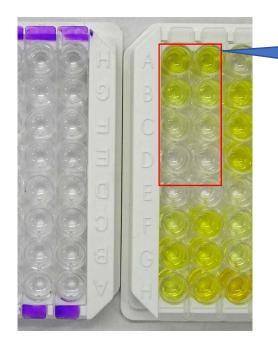
考えられる原因	解決方法
プレートの不十分な 洗浄	プレートの洗浄は400 µL/ウェルで最低 6 回行うこと。使用する洗浄機によっては、6 回以上の洗浄サイクルが必要な場合もある。各サイクル間の浸漬時間を 5 秒以上にする。
反応温度が高い	ELISA法における反応は、22±5℃ で行う。
試薬の期限切れ	本品は使用期限内に使用する。溶解したIFN - γ標準及び標識抗体 濃縮液は、溶解日から3ヵ月以内 に使用する。
酵素基質液の汚染	基質が青色になっていたら廃棄す る。汚染のない試薬を用いる。

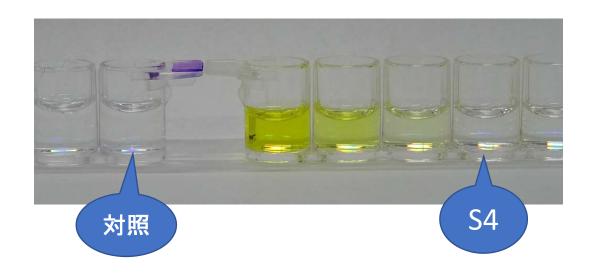
その他の注意事項

- 洗浄装置の吐出・吸引状況の点検(使用時)
- 使用器具(ピペット)の定量点検
- 試料分注時の検体確認(フィブリンの有無)
- ・試薬の確認
- 比色計の適切な使用(光量の安定化など)
- 試薬分注に使用する試薬容器の適切な洗浄
- 測定後のS2、S4による検量線確認とOD確認

プレート洗浄後の残渣確認

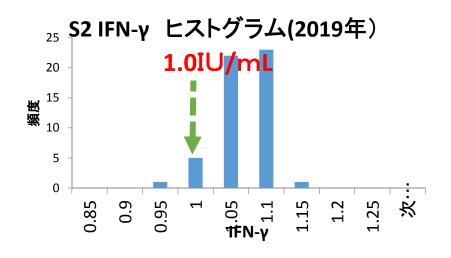
●機器の始業時点検

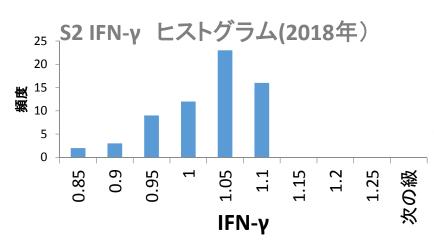

- ①QFT検査で使用済みプレートを洗浄・乾燥させたものを 準備。
- ②使用済みプレートを用いて洗浄工程のみ実施させる。
- ③プレートの各ウエルに残る残渣を目視で確認する。


プレート洗浄後の残渣確認

●検査後のブランク確認

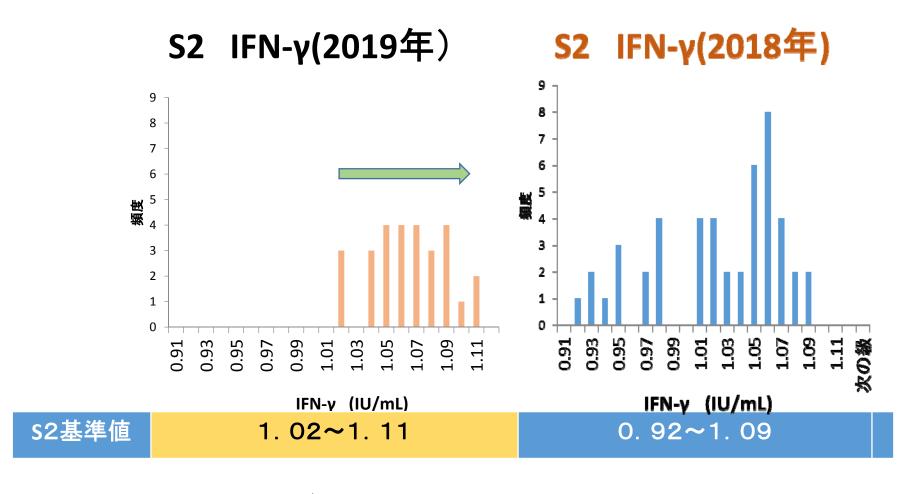
- ①QFT検査で使用済みプレートを洗浄・乾燥させたものを 準備。
- ②反応停止液または精製水をウエルに150µL分注(対照)。
- ③測定後プレートの下に白紙を敷き、S4ウエルと対照プレートのウエルを比較し、着色の有無を確認する。


標準液 上から\$1,2,3,4



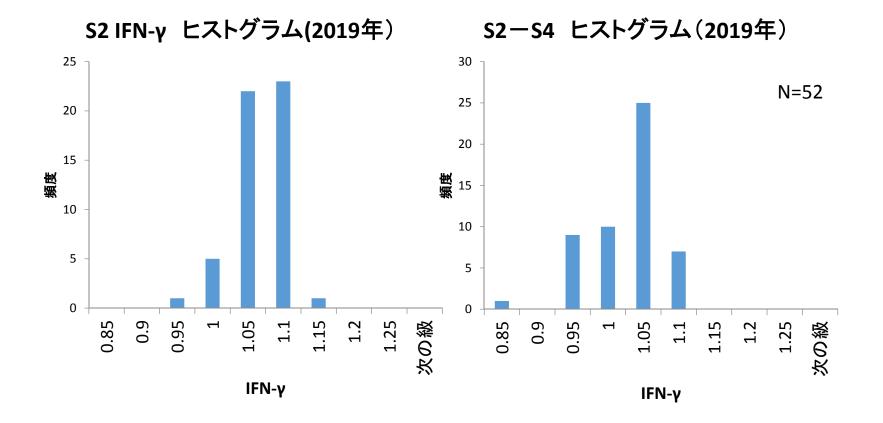
S2とレベル2

に関する考察


S2(1.0IU/mL)はカットオフ0.35IU/mLに対する 検量線の影響を反映するため、52施設のS2戻 り値について分布状況を確認した。

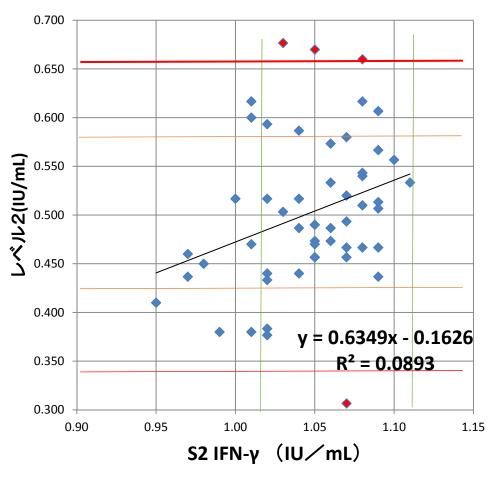
S2戻り値は0.95~ 1.11IU/mLの範囲で分 布しており、前年の0.76 ~1.09IU/mLと比較し 改善が見られたが、5 ~10%高い傾向は継 続していた。

A評価32施設のS2(IFN-γ)を元に2SD反復切断後(臼井法)のヒストグラムにより基準範囲を設定した。



前年に比べS2ヒストグラムは理論値1. OIU/mLよりも右寄りにシフト

- S2、S4のIFN-γ量としての戻り値を算出し、
 - ①S4戻り値≦0.06 (ブランクの確認)
 - ②S2戻り値 <u>1.02</u>~1.11


を確認することで検量線のセルフチェックが可能?

S2戻り値は以前より高い?

S2よりS4のIFN-γ値を差し引くことでブランク補正を試みた結果、5%程度の高値傾向は見られた。 この傾向は母集団をA評価群に限定しても同様であった。

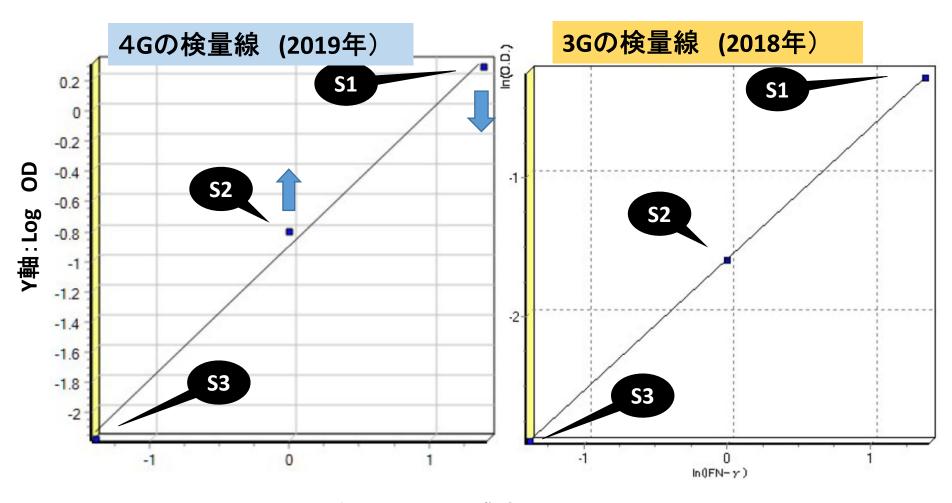
S2とレベル2の相関

S2戻り値とレベル2の IFN-γ量との相関は認められず、精度不良要因は検量線以外にも存在する可能性が示唆された。

◆ レベル2:A, B評価

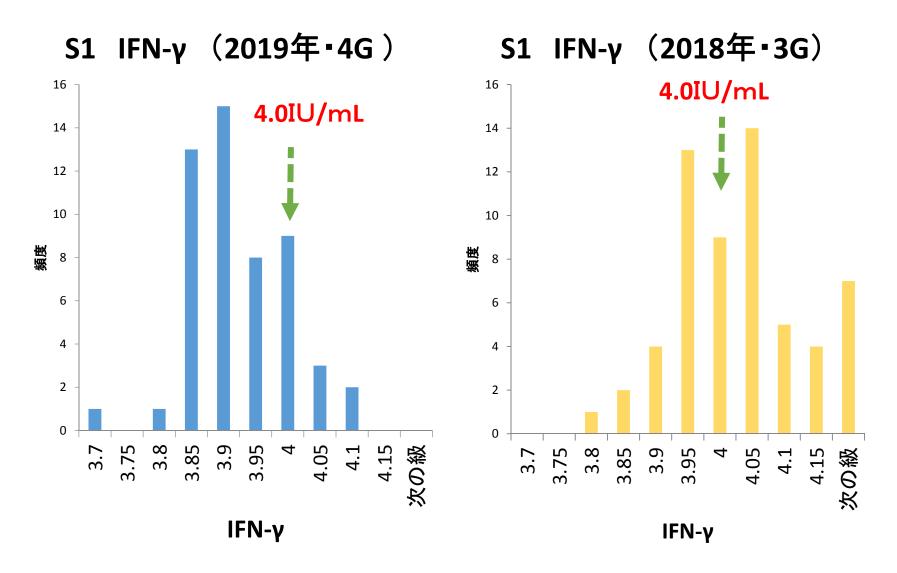
◆ レベル2: C評価

レベル2評価基準

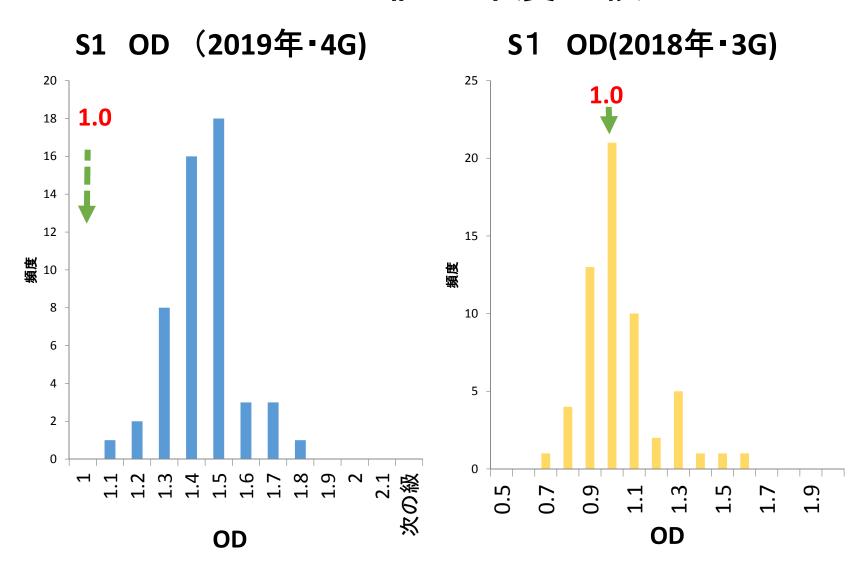

1SD	0.423
	0.581
2SD	0.344
	0.660

S2基準値

1. 02~1. 11

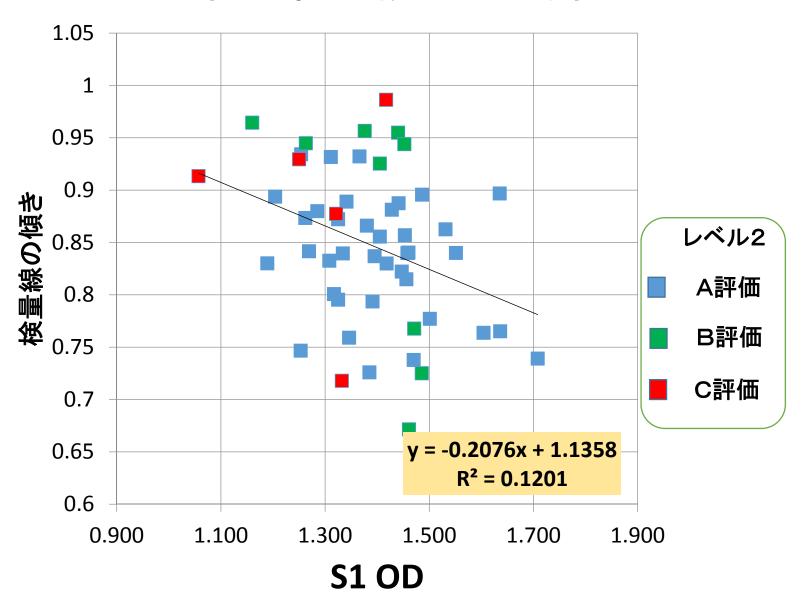

4GのS2は検量線の上側に、S1は下側にプロットされた施設が多い。

3Gでは概ね検量線上にS1,2ともプロットされていた。



X軸:Log IFN-γ濃度

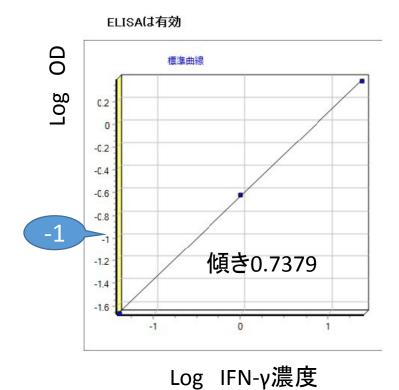
S1 IFN-γ戻り値の年度比較



S1 OD値の年度比較

S1 ODは前年度と比較し明らかに高値傾向を呈していた。

S1 ODと検量線の傾きとの相関


S1、S2、レベル2に関する考察

- 2019年度調査においてS2戻り値はやや高値傾向 となり検量線の評価に使えるのか?
- 2019年度では検量線上でS2は高値、S1は低値側にプロットされるものが多く、その原因の一つとしてS1 OD値が前年度(3G)に比べて高くなっていることが疑われた。
- •レベル2のC評価は高値3施設、低値1施設であったが原因については不明であった。
- S1OD値と検量線の傾きには弱い相関がありそうだが、レヘール2不良との因果関係は不明である。

事例紹介

Case 1 全自動分析装置

	S1 (4IU/mL)	S2 (1IU/mL)	S3 (0.25IU/mL)		S4 U/mL)
OD	1.470	0.538	0.190	↑	0.073
IFN-γ(IU/mL)	3.97	1.02	0.25	↑	0.07

報告値

	IFN-γ(IU/mL)					
レベル1	0.063 1					
レベル2(平均)	0.383 ↓					

考えられる要因

- ・レベル1が高いため、洗浄不良?
- ・自動分析装置の問題
- ・スプリット間差
- ・使用器具・手技を含め、調査が必要

検体配置例

	12711		_ 17 3						/				
	列	1	2	3	4	5	6	7	8	プ	レー	- ト <i>σ</i> ,	中与
	Α	1N	3N	5N	7N	9N	S1	S1	13N	標	進汉	をある	置
	В	1TB1	3TB1	5TB1	7TB1	9TB1	S2	S2	13TB1				吸収
	С	1TB2	3TB2	5TB2	7TB2	9TB2	S3	\$3	<u></u>				
	D	1M	3M	5M	7M	9M	\$4	\$4	13			_	食体に
	E	2N	4N	6N	8N	10N	11N	12N	14N	וינק	尚し、	场往	計に
	F	2TB1	4TB1	6TB1	8TB1	10TB1	11TB1	12TB1	14TB1	16101	IOIDI	ZUIDI	ZZIDI
	G	2TB2	4TB2	6TB2	8TB2	10TB2	11TB2	12TB2	14TB2	16TB2	18TB2	20TB2	22TB2
1													

2M | 4M | 6M | 8M | 10M | 11M | 12M | 14M | 16M | 18M |

プレートの中央2スプリットに標準液を配置し、スプリット間差などを吸収出来る配置。 用手法で検体配置の自由度が高い場合に採用。

20M

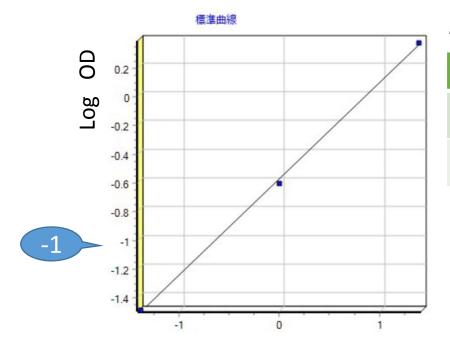
22M

自動分析装置で採用されている検体配置例

列	1	2	3	4	5	6	7	8	9	10	11	12
Α	S1	3N	5N	7N	ONI	1N	2N	13N	15N	17N	19N	21N
В	S2	3TB1	5	プレ・	— 	の左	端領	第一	スプ	リッ	В1	21TB1
С	\$3	3TB2	5	トに	標準	퇃液	を配	置し	ハス	、プ	B2	21TB2
D	\$4	3M		ノット	間	差が	吸収	出	来な	い。	М	21M
Е	S 1	4N			_		自由		•		Ν	22N
F	S2	4TB					置と		•	* *	В1	22TB1
G	S3	4TB2						その	场口	11-	B2	22TB2
Н	S4	4M	61	术用	され	CL	' 0.				∠ 0M	22M

提案

従来の検体配置図で標準液を別スプリットで測定するなどし、スプリット間差がある程度大きい事が



	24				-	-	_	,	-	,	10		12
	Α	S1	3N	5N	SI	9N	S1	S1	13N	S1	17N	S1	21N
	В	S2	3TB1	5TB1	52	9TB1	52	S2	13TB1	52	17TE 1	S2	21TB1
	С	S3	3TB2	5TB2	53	9TB2	53	S3	13TB2	53	17TE 2	S3 !	21TB2
	D	\$4	3M	5M	\$4	9M	\$4	S4	13M	S4	17/	\$4	21M
	Е	S1	4N	6N	8N	10N	11N	12N	14N	16N	18N	20N	22N
	F	S2	4TB1	6TB1	8TB1	10TB1	11TB1	12TB1	14TB1	16TB1	18TB1	20TB1	22TB1
	G	S3	4TB2	6TB2	8TB2	10TB2	11TB2	12TB2	14TB2	16TB2	18TB2	20TB2	22TB2
	Н	\$4	4M	6M	8M	10M	11M	12M	14M	16M	18M	20M	22M

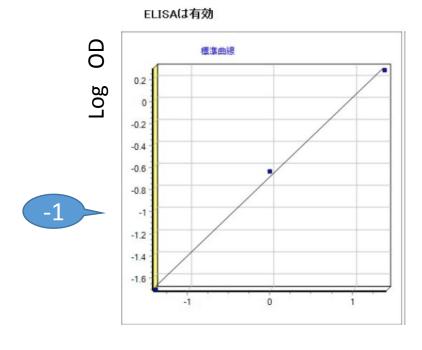
列	1	2	3	4	5	6	7	8	9	10	11	12
Α	1N	\$1	5N									21N
В	1TB1	S2	5TB1	- 3	<u> </u>	- L σ	大士	坐	_	第二	- 7	1TB1
С	1TB2	\$3	5TB2			-			•			1TB2
D	1M	S4	5M					•		液を		21M
Е	2N	4N		_	-			_		を吸		22N
F	2TB1	4TB1	6TB		出来	そる 西	己置	に変	更	する。	0	2TB1
G	2TB2	4TB2	6TB2								4	2TB2
Н	2M	4M	6M	8M	10M	11M	12M	14M	16M	18M	20M	22M

49 Case 2 用手法

	S1 (4IU/mL)	S2 (1IU/mL)	S3 (0.25IU/mL)	S4 (0IU/mL)
OD	1.461	0.548	0.227	1 0.136
IFN-γ(IU/mL)	4.10	0.95	0.26	1 0.12

Log IFN-γ濃度

報告値


	IFN-γ(IU/mL)
レベル1	0.04
レベル2(平均)	0.41

考えられる要因

・S4ODのみ高いため、試料の取り扱い、洗浄不良や事務的な問題がなかったか確認が必要です

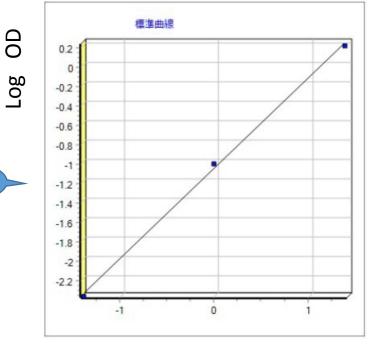
41 Case3 用手法

	S1 (4IU/mL)	S2 (1IU/mL)	S3 (0.25IU/mL)	S4 (0IU/mL)
OD	1.332	0.532	0.182	0.054
IFN-γ(IU/mL)	3.86	1.07	0.24	0.04

Log IFN-γ濃度

報告値

	IF	N-γ(IU/mL)
レベル1		0.020
レベル2(平均)	\downarrow	0.307


考えられる要因

・レベル2のみ低いため、試料の取り扱い、スプリット間差の影響、ピペットの不良などがなかったか確認が必要です

35 Case4 用手法

	S1 (4IU/mL)	S2 (1IU/mL)	S3 (0.25IU/mL)	S4 (0IU/mL)
OD	1.250	0.371	0.095	0.016
IFN-γ(IU/mL)	3.90	1.05	0.24	0.04

ELISAは有効

Log IFN-γ濃度

報告値

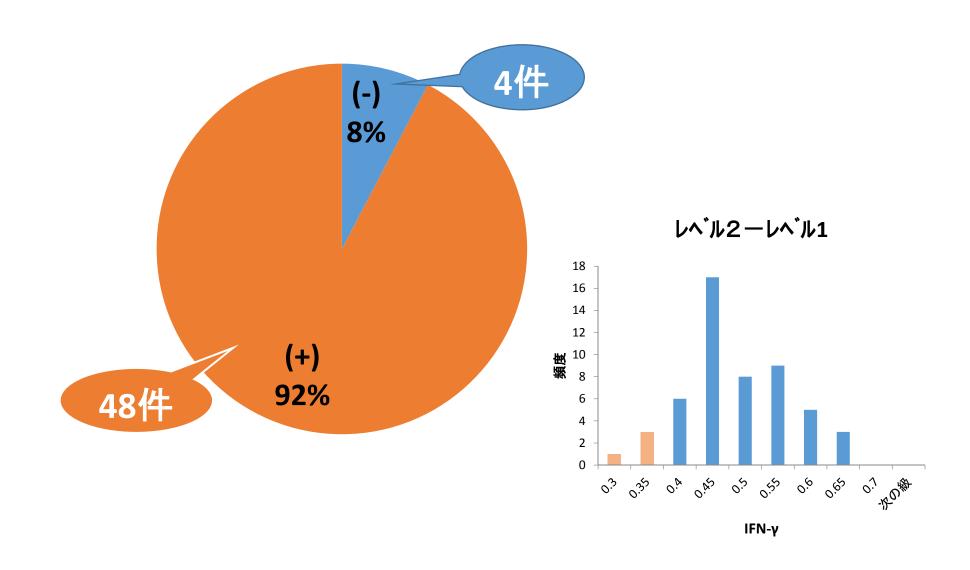
	IFN-γ(IU/mL)		
レベル1		0.033	
レベル2(平均)	↑	0.670	

考えられる要因

・レベル2のみ高いため、試料の取り扱い、スプリット間差の影響、ピペットの不良などがなかったか確認が必要です

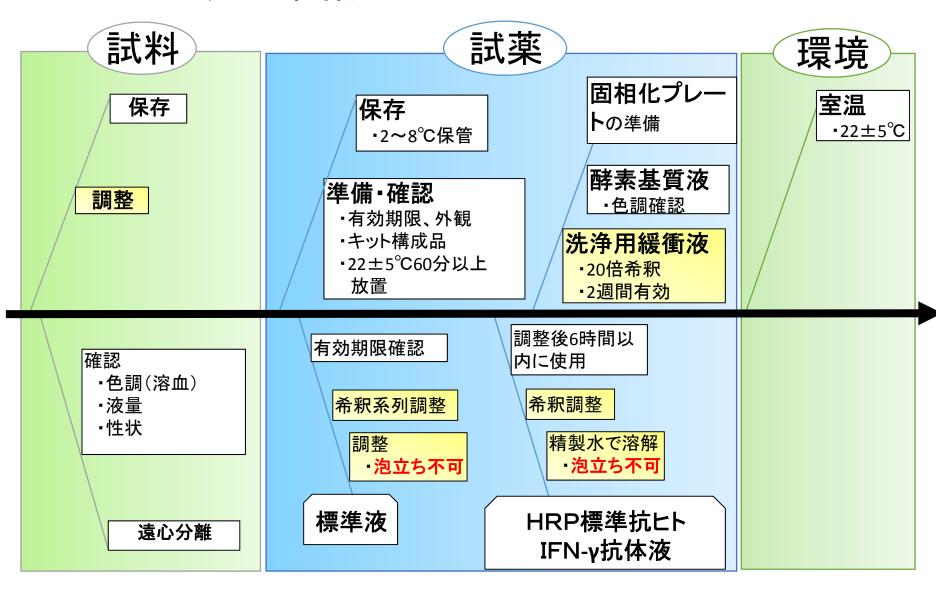
残された課題

- •S1 OD高値の影響は?
- •QFT検査におけるLot間差は?
- •QFT検査におけるスプリット間差は?


•QFT検査は定性検査だがIFN-γ値の施設間差は検査の性能上において許容出来るのか?

QFT-4G判定基準

Nil値 (IU/mL)	TB1値 (IU/mL)	TB2値 (IU/mL)	Mitogen値 (IU/mL) *1	結果	解釈
8.0以下	0.35以上 かつNil値 の25%以上	不問	不問	陽性	結核感染を 疑う
	不問	0.35以上 かつNil値 の25%以上			
	0.35未満、あるいは 0.35 以上かつNil値の25%未満		0.5以上	陰性	結核感染し ていない
			0.5未満	判定	結核感染の 有無につい
8.0を 超える	不問			不可	て判定できない


QFT-4GよりIFN-γは8IU/mLまでデータを担保する必要がある。 しかし、S1 ODが高い試薬で8IU/mLまで直線性が得られるの か? 比色計の性能を超えていないか?

(レベル2ーレベル1)値を定性変換した場合の判定のばらつき

ELISA測定 準備

ELISA測定

抗ヒトIFN-γ抗体固相化プレート

HRP標準抗ヒ トIFN-γ抗体液 50μL分注

標準液・試料 50μL分注 ・沈殿物の混入防止

ミキシング 1分

プレート洗浄

- ·洗浄用緩衝液400μL分注
- •6回以上洗浄
- ・洗浄液の完全除去

酵素基質液 100μL分注

ミキシング 1分

酵素反応停止液 50µL分注

インキュベーション 時間厳守コンタミネーションの 防止

測定

- •5分以内
- ·主波長450nm
- ·副波長620~ 650nm
- ・各ウエルの発 色状況を確認

ミキシング

インキュベーション

- -22±5°C
- •120±5分
- 萘
- •直射日光は禁忌

インキュベーション

- •22±5°C
- •30分
- 蕃
- •直射日光は禁忌

報告書作成

データ解析

- •log-log標準曲線
- -品質管理